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Abstract 

This paper proposes and tests the implementation of a sustainable cooling approach that uses a 

machine learning model to predict operative temperatures, and an automated control sequence 

that prioritises ceiling fans over air conditioners. The robustness of the machine learning model 

(MLM) is tested by comparing its prediction with that of a straight-line model (SLM) using the 

metrics of Mean Bias Error (MBE) and Root Mean Squared Error (RMSE). This comparison is done 

across several rooms to see how each prediction method performs when the conditions are 

different from those of the original room where the model was trained. A control sequence has 

been developed where the MLM’s prediction of Operative Temperature (OT) is used to adjust the 

adaptive thermal comfort band for increased air speed delivered by the ceiling fans to maintain 

acceptable OT. This control sequence is tested over a two-week period in two different buildings 

by comparing it with a constant air temperature setpoint (24ºC).  

Analysis of the data showed that the MLM is more consistent with lower errors than the SLM 

across a variety of rooms. The MLM is robust enough to predict temperatures in rooms that the 

model was not trained in. Compared to the constant air temperature setpoint control, the OT 

control sequence showed improved comfort reported by 70 occupants in the study and a cooling 

electrical energy savings of over 90% during the test conditions. 

Keywords:  sustainable cooling, ceiling fans, adaptative comfort, air speed, machine learning, AI, 

control sequence 

  

Introduction  

Per capita annual electricity consumption for space cooling in India is only at 69 kWh compared 

to the global average of 272 kWh (IEA, 2018). With global warming, rising temperatures will 

increase India’s cooling energy requirement and more people will need access to cooling. The 

India Cooling Action Plan calls for synergistic actions to provide sustainable space cooling that is 

affordable. Much of the new construction is planned for air-conditioning (AC) and the existing 

building stock is increasingly retrofitted with AC systems. India thus has a large stock of buildings 

that are operated in spatial or temporal mixed mode (Brager, G., 2006). Mixed mode buildings 

present a significant opportunity for energy savings while providing exceptional levels of comfort 



to occupants (Angelopoulos, C., Cook, M., Spentzou, E., & Shukla, Y., 2018). “Mixed mode” in 

space conditioning blends natural ventilation from operable windows with mechanical systems 

for air distribution and cooling, optimizing natural ventilation during periods of the day or year 

when it is feasible or desirable (Brager & Borgeson, 2007). The adaptive comfort model for mixed 

mode operation can be a promising approach to the cooling energy challenge. However, 

adaptive models use indoor operative temperature (OT), which requires the measurement of air 

temperature, air velocity, and globe temperature in a space. Collecting real-time and long-term 

data for these is difficult. On a previous work we showed a method that uses machine learning 

to predict operative temperature with minimum measurement equipment (De, A., Thounaojam, 

A., Vaidya, P., Sinha, D., & Raveendran, S. M., 2020). While that work demonstrated that the RMSE 

of prediction of OT was less than 0.09ºC, the testing was limited to the room that the MLM was 

trained on. To use this approach for developing a control sequence that can be used more 

widely, it is important that the MLM provides acceptable prediction of OT across a range of 

rooms. This paper tests the MLM in the following ways:  

• The OT prediction of the MLM is compared with that of a SLM in 4 additional rooms that 

have different thermal characteristics.  

• The OT prediction of the MLM is tested further to see if training the MLM in a specific 

room with different thermal condition improves its prediction. 

 

Then, the MLM approach is used to develop a control sequence for the India Model or Adaptive 

Comfort (IMAC). Using the IMAC and the Corrective Power of ceiling fans, the control sequence 

prioritises ceiling fan operation over AC. to minimise or eliminate the use of ACs and reduce 

energy consumption. The control sequence is tested in two different rooms; one, in a passively 

designed building with an insulated envelope, and another, in a typical uninsulated building, 

tested for these conditions:  

• Base case of 24°C (AC set-point suggested by the Bureau of Energy Efficiency, India) with 

no ceiling fans operating.  

• Ceiling fan prioritised control sequence  

 

The aim of this research is to provide energy efficient and comfortable cooling while maintaining 

thermal comfort of the occupants. We demonstrate the robustness of the MLM, and we 

summarise the development, implementation and testing a control sequence, which prioritizes 

the use of ceiling fans over ACs. We use fan and AC products available in the market.  

The significant contributions of this work are to demonstrate that OT predicted in real time with 

ML can be used in a control sequence that automates the prioritisation of ceiling fans, and that 

in tropical conditions such as those prevailing in India, occupants report higher levels of comfort 

with ceiling-fan induced air movement and higher temperature set points. The findings of this 

study point to a method of space cooling that takes full advantage of the IMAC and can be an 

affordable and sustainable cooling approach. 

 

Literature Review  

Earlier standards of thermal comfort were formed around static thermal comfort models that 

were applied universally, but they relied on air conditioning to maintain thermal comfort of 

occupants (de Dear, & Brager, 1997). A location specific adaptive comfort model for India, which 



includes the building’s ventilation type (naturally ventilated, AC, or mixed mode) was developed 

by Manu et al., to help in maintaining thermal comfort of occupants but also helps in reducing 

energy consumption (de Dear, et. al., 2016 and ASHRAE, 2017). It allows buildings to operate 

within a broader range of indoor operative temperatures.  

ASHRAE Standard 55 included an elevated air speed comfort zone method, which allows us to 

define limits for comfort for indoor operative temperature for increased air speed in the space, 

when other parameters like met value and clo value are held constant. In the 2017 version of the 

ASHRAE Standard 55, the upper limit of airspeed was increased to 1.6 m/s. Angelopoulos et al., 

(2018) used a simulation approach to assess a variety of control algorithms and showed that 

mixed mode controls with adaptive comfort models provide flexibility of use, improved thermal 

comfort, and energy savings of about 40% in Indian cities.  

Another study by Fanger and Toftum (2002) showed that occupants in warmer countries who 

have adapted to high temperatures prefer warmer temperatures, especially in naturally 

ventilated buildings where the outdoor temperature has significant influence on the indoor 

comfort parameter. Candido & de Dear (2012), also state that occupants who feel hot prefer 

more air movement, while Zhai et al. (2017) concluded that the provision of air movement is 

more important than temperature control in such warm environments.  

Ceiling fans are an efficient adaptive comfort strategy to induce air movement, improve comfort, 

and have a corrective power index (CP) of -1K to -7K, when the air speed is as high as 1 m/s and 

the ambient temperature is as high as 33°C (Zhang, Arens, & Zhai, 2015). Corrective power is 

defined by ASHRAE 55 as the ability of a PCS to correct the thermal sensation of a person 

towards comfort zone. It is expressed as the difference in operative temperatures between two 

instances, where equal thermal sensation is achieved, one with PCS and one without PCS 

(ASHRAE, 2020). Raftery, Miller, & Zhang, (2020) and Raftery et. al., (2021) conducted a thermal 

comfort study in California showed a CP of over 4ºK in 10 buildings with air conditioners, where 

ceiling fans with air movement provided comfort at 26.7°C while only air conditioning provided 

comfort at 22.2°C. In another study conducted in the tropics, ceiling fans provided comfort up to 

27°C, but if given a preference the occupants preferred to have minimal air conditioning along 

with the ceiling fans to attain comfort (Lipczynska, Schiavon, & Graham, 2018). A study by 

Bongers et al., (2022) in Australia also found that use of ceiling fans can increase the 

temperature limit at which the air conditioning needs to be switched on. The study reports 

annual energy savings up to 76%. A thermal comfort tool by the Center for Built Environment 

(CBE) shows that the upper limit of the comfort model shifts further upwards in response to 

increased airspeed in the space (Tartarini, Schiavon, Cheung, & Hoyt, 2020). In our earlier work, 

we used the tool to obtain the upward shift for several conditions and developed an equation to 

apply the effect of air speed on the IMAC band (De et. al., 2020). 

 

Methodology  

Developing the Machine Learning Model (MLM)  

As described in De 2022, for a 400 m2 building in Bangalore, with a naturally ventilated room 

that houses workstations, a calibrated thermal model was developed. The model was then used 

to develop 10 scenarios consisting of different building characteristics and building operations. 

The simulations of these 10 scenarios provided 87,600 data points for hourly results consisting 



on outdoor conditions, indoor air temperature, indoor humidity, and indoor OT. Using a train-

test ratio of 0.75-0.25 (75% data used for training and 25% data used for testing), a random 

forest algorithm was trained to give a machine learning model (MLM) that predicted OT based on 

a combination of indoor air temperature and outdoor conditions that could be measured by a 

weather station.  

 

Testing the robustness of the MLM  

While this MLM predicted OT with errors (RMSE and MBE) in an acceptable range for the 

workstation room (Room 1), we needed to test the robustness of the MLM to predict OT for 

other rooms with different thermal characteristics. If the MLM predicted the OT for other rooms 

with errors in acceptable ranges, the model would be considered robust. The ASHRAE method 

for low airspeed uses a simple average of the indoor air temperature (Ta) and the mean radiant 

temperature (MRT) to calculate OT, which is essentially a linear relationship between Ta and OT 

(ASHRAE, 2017). Using the data for Room1, we developed a straight line model (SLM) for Room1 

where a linear equation predicted the OT based on the Ta. Prediction errors were compared 

between the SLM and the MLM across 4 additional rooms (Rooms 2, 3, 4 and 5). See Table 1 for a 

summary of the differences between Rooms 1, 2, 3, 4 and 5. All rooms are located in Bangalore. 

Table 1: Summary of differences in rooms used for testing  

Item/Room Room 1 Room 2 Room 3 Room 4 Room 5 

MLM Training 
Trained in this 

room 

Non trained in 

this room 

Non trained in 

this room 

Non trained 

in this room 

Non Trained 

in this room 

Room 

Function 
Offices Offices Offices Conference  Conference 

Room Area 

(m2) 
35 30 18 17 58 

Building Type 
Office, passive 

design 

Office, 

business-as-

usual design 

Office, 

business-as-

usual design 

Office, 

business-as-

usual design 

Office, 

passive 

design 

Floor Ground Floor First Floor Second Floor Third Floor Ground Floor 

Wall 

construction 

and U value 

(W/m2K) 

Rammed 

earth wall with 

50 mm 

insulation and 

stone cladding 

0.54 

Uninsulated 

brick wall with 

plaster 

 

2.4 

Uninsulated 

brick wall with 

plaster 

 

2.4 

Uninsulated 

brick wall 

with plaster 

 

2.4 

AAC and 

CSEB wall 

with 

insulation 

and china 

mosaic 

0.35 

Windows 

facing  
West  South  

North and 

East  
North 

North-east 

and North-

west 

WWR (%) 27 53 41 18 40 



Exterior 

shading 
Overhangs Trees only None Overhangs Overhangs 

Window U 

value (W/m2K) 
2.68 4.4 4.4 4.4 2.68 

Internal loads 

(W/m²) 
35 9.2 5.8 12.5 107 

 

 

 

Figure 1: Images of Rooms 1, 2, 3, 4, and 5 (bottom) clockwise from top left.  

  

  

 

 

Developing and testing of the control sequence for ceiling fan prioritisation 

Two conference room spaces in Bangalore were selected for the study. One was in a passively 

designed, insulated office building, and the other was in a business-as-usual, uninsulated office 



building.  Both rooms had split AC units and were operated in mixed mode.  Brushless direct 

current (BLDC) smart fans were installed in both rooms.  Indoor environmental quality (IEQ) 

boxes were installed in both rooms to collect air temperature and relative humidity data.  

Outdoor weather parameters are collected with a weather station on the buildings. Energy 

meters were installed to collect energy consumption data for the AC and the ceiling fans.  

Infrared (IR) blasters were installed to control the ceiling fans and the AC units.  See figure 2.   

 

Figure 2. Images of the hardware installed in each room (a) BLDC ceiling fan, (b) IEQ box, (c)IR blaster, (d) 

energy meters 

    

The control sequence uses the IMAC for determining the thermal comfort band.  Based on the 

National Building Code 2016, Volume 2, the 90% acceptability range for mixed-mode buildings 

band is calculated as  

IMAC_upper = ((0.28 x outdoor temperature) + 17.87) + 3.46  (eq. 1) 

IMAC_lower = ((0.28 x outdoor temperature) + 17.87) - 3.46  (eq. 2) 

Where IMAC_upper, and IMAC_lower are the upper and lower limits respectively, of the thermal 

comfort band. The IMAC_upper is used as the threshold for determining comfort.   

The OT prediction ML model runs every minute using the data from the IEQ box and the weather 

station. The predicted OT is compared with the upper limit of the thermal comfort band.  To 

determine the upward shift of the upper limit of the band when air speed is introduced as a 

variable in the space, we use the equation determined by De et al., (2022)  

y = -1.39x2+ 4.92x - 1.38                                                                  (eq. 3)   

Where y is the shift in the upper limit of the band (OT) and x is the air velocity.   

Average of the air speeds measured where the users are seated in the space is noted as the 

spatial average air speed of the space. The air speed at each user’s location is also measured at 

the heights of 0.6 m and 1.1 m from the floor level (Gao et. al., 2017). This gave us pre-calculated 

the airspeeds achieved for each fan speed setting in the room.  The shift of the extended upper 

limit (extended_IMAC_upper) of the comfort band is calculated using the airspeed achieved at 

each setting and equation 3 (also see figure 3).   

● If the predicted OT is lower than IMAC_upper, the control sequence keeps the ceiling fan 

and AC off.   

● If the predicted OT is higher than IMAC_upper, but lower than the extended_IMAC_upper, 

the control sequence turns on the ceiling fan to the appropriate airpspeed but keeps the 



AC off. 

● If the predicted OT is higher than the extended_IMAC_upper for the highest fan speed 

setting, the fan is switched on at the highest speed to use its full potential and the AC is 

switched on with the highest set-point possible. This setpoint is calculated in the 

following steps: 

1. By using the OT formula from ISO 7726-1998, MRT in the space was calculated by 

using the predicted OT value.   

𝑇𝑚𝑟𝑡 =  [
(𝑇𝑔+273.15)

4
+1.1×108×𝑉𝑎

0.6

𝑒×𝐷0.4(𝑇𝑔−𝑇𝑎)
]

0.25

− 273.15                    (eq. 4)    

[𝑊ℎ𝑒𝑟𝑒 𝑇𝑚𝑟𝑡 = 𝑚𝑒𝑎𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,  𝑇𝑔 = 𝑔𝑙𝑜𝑏𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,   𝑉𝑎 = 𝑎𝑖𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝐷 =

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑙𝑎𝑐𝑘 𝑏𝑎𝑙𝑙 (0.04𝑚 𝑓𝑜𝑟 𝑝𝑖𝑛𝑔 𝑝𝑜𝑛𝑔 − 𝑏𝑎𝑙𝑙), 𝑇𝑎 = 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑒 =

𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 (0.95 𝑓𝑜𝑟 𝑏𝑙𝑎𝑐𝑘 − 𝑔𝑙𝑜𝑏𝑒)]   

𝑇𝑜 =
𝑇𝑎(√10𝑉𝑎)+𝑇𝑚𝑟𝑡

(1+√10𝑉𝑎)
                                                                       (eq. 5)    

[𝑊ℎ𝑒𝑟𝑒 𝑇𝑜 = 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝑚𝑟𝑡 = 𝑚𝑒𝑎𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,  𝑇𝑔 =

𝑔𝑙𝑜𝑏𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,   𝑉𝑎 = 𝑎𝑖𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, , 𝑇𝑎 = 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  ]  

2. Then the air temperature in the space is calculated using the same formula since 

MRT and the desired OT values are known.  

𝑇𝑎 =
𝑇𝑜(1+√10𝑉𝑎)−𝑇𝑚𝑟𝑡

(√10𝑉𝑎)
                                                                    (eq. 6) 

3. The calculated air temperature is sent as set-point temperature to the AC.   

 

Figure 3: Three scenarios for the control sequence 

 

For the thermal comfort study and energy testing, a total of 70 respondents participated in the 

study. Data was collected about age, gender, height, and weight, history of their space cooling 

adaptations and preferences, recent physical activity and documentation of the clothing that 

they were wearing. 



The respondents were exposed to 3 different conditions for 30 minutes each, with 5 minute 

break outside the test room between the 3 conditions.   The conditions were: condition 1 - room 

maintained at a constant 24ºC setpoint without ceiling fans; condition 2 - room maintained at 

IMAC band neutral temperature without ceiling fans, and; condition 3 - room comfort 

maintained using the proposed control sequence.  The study was carried out between 14th 

March, and 28th of March. Energy used by the air conditioners and ceiling fans was recorded by 

the meters.   

 

Figure 4: Thermal comfort study in progress 

  

 

Results 

Developing the Machine Learning Model (MLM)  

The testing of the Machine Learning algorithm to predict OT for a seven-day period with hourly 

data resulted in an RMSE = 4% and MBE = 3%. The accuracy was found to be 96.77 %. 

Testing the robustness of the MLM 

The SLM based on the data of Room 1 yielded the following results with its equation (see figure 

5).  The correlation is  

OT = 1.28 (AT) – 5.1                                                                                     (eq 7) 

Where OT is calculated operative temperaure using the measured data and AT is the mesaured 

Air temperature.  

Figure 5: Straight Line Method correlation between OT and AT for room 1           
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Figure 6 shows the comparison of the SLM with the MLM for Room 1, where both models were 

trained. For this room, the SLM has lower error than the MLM with an RMSE = 1% and MBE = 1%.  

 

Figure 6: Predicted OT, comparison between SLM and MLM for room 1 

  

When comparing the errors for the SLM and MLM across rooms 1, 2, 3, 4, and 5 (see Figure 7), it 

is evident that the MLM trained on Room 1 consistently yields lower errors than the SLM trained 

on Room 1. Both the Mean Bias Error (MBE) and Root Mean Square Error (RMSE) of SLM increase 

significantly for rooms 2, 3, and 5, with the exception of Room 4. 

The SLM for Room 4 exhibits lower errors because the air temperature (AT) and operative 

temperature (OT) in this room follow a trendline similar to that of Room 1. This similarity results 

in a high correlation between the regression equations of Room 1 and Room 4. However, this 

scenario is unique and may not always be replicable. In the case of MLM, the MBE and RMSE 

across the rooms have average of 1% difference between each other.   

 

Figure 7: MBE and RMSE comparison between SLM and MLM for different rooms 

  

Given that the MLM demonstrates greater robustness in predicting OT in rooms it was not 

specifically trained on, it is important to evaluate the potential improvement in MLM predictions 

when it is custom-trained for a specific room. This analysis will provide insights into the 

enhanced accuracy and reliability that can be achieved through room-specific training of the 

MLM.  

Figure 8, shows that the RMSE improves from 3% (non-custom trained) to 1% (custom trained), 

while the MBE improves from 4% (non-custom trained) to 2% (custom trained), a reduction by 2 

percentage points on each error metric.   
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Figure 8: Impact of training the MLM on individual room (custom training) 

 

 

 

 

 

 

 

 

Developing and testing of the control sequence for ceiling fan prioritisation 

About 60% of the respondents were in the age group of 20 to 39 years and the gender ratio was 

almost equal. Most of the respondents were involved in sedentary activities before their sessions 

in the study.  98% of the respondents answered that they use ceiling fans for space conditioning 

in their residence, followed by operable windows and usage of curtains/blinds. But in their 

workplaces ceiling fans were used by 68% of the participants, operable windows and air 

conditioners were used by about 49% of the participants.  As a method for space conditioning, 

ceiling fans were preferred by 49%, operable windows by 35%, and ACs preferred by only 15% of 

the respondents.  

During the two-week testing of the control sequence, the outdoor dry bulb temperature was in 

the range of 29 °C to 35°C. During the study period, the IMAC neutral temperature setpoint was 

calculated at 24ºC.  This resulted in identical setpoints for condition 1 and condition 2, and the 

results for thermal comfort and energy for those conditions are very similar.  Therefore, the 

thermal comfort and energy analyses results below only show condition 1 and condition 3.  

Figure 9: Results of thermal comfort left (left) and energy measurements (right) during the testing of the control 

sequence 
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About 77% of the respondents reported being comfortable in condition 3, i.e. fan prioritized 

control sequence condition compared to about 69% in the other condition of the study (see 

figure 9, left hand graph).  

The respondents were also asked whether the airspeeds they experienced were acceptable to 

them.  When the ceiling fan was off, 83% found this unacceptable.  Since the fans did not come 

on at settings of 1, 2 and 6 (FS1,FS 2, FS6) during the study, the data on these are not available.  

The airspeed of 0.4 m/s was acceptable to 89% of the respondents. The acceptability decreases 

when the air speed is 0.53 m/s and 0.65 m/s (see figure 10). 

Figure 10: Results of fan-speed setting preference survey during the testing of the control sequence 

 

Electrical Energy consumption for each scenario was determined by calculating the difference in 

electrical energy meter readings at the beginning and end of the respective scenario. It is 

observed that under the BEE 24°C baseline, a total of 5.11 kWh was consumed across all 

sessions, whereas the fan prioritized control sequence showed a consumption of 0.06 kWh, 

resulting in 98.8% reduction in cooling energy usage (refer to figure 9, right-hand graph). It is 

important to note that the outdoor dry bulb temperature ranged between 29°C and 34°C during 

the study. According to the thermal comfort survey that was done (refer to Figure 10), there was 

a decrease of 1% in unacceptable preference when transitioning from fan mode OFF to Fan 

mode ON at Fan-speed setting 3 (FS3), and an increase of 4% from Fan-speed setting 3 (FS3) to 

Fan-speed setting 5 (FS5). Due to this small incremental difference in unacceptable fan-speed 

setting preference, it is inconclusive to determine whether increasing fan-speed settings makes 

people more uncomfortable.  

In the room in the business-as-usual (BAU) building, cooling energy savings were at 98.6%, while 

in the passively designed building, savings were 100%. The 100% savings in the passive building 

can be attributed to the fact that due to the passive features, the indoor temperature generally 

remained within the comfort range. In the rare instances when it exceeded this range, it never 

went above the extended_IMAC_upper. As a result, the ceiling fan was activated only on a few 

occasions, and the AC unit remained unused in this building. The low energy consumption of the 

BLDC fans was not recorded in the passive building because of the  least count display of the 

energy meters. 
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In the BAU building, although the outdoor temperature often exceeded the IMAC_upper, it 

generally remained below the extended_IMAC_upper. This led to frequent activation of the 

ceiling fans. Throughout the study in the BAU building, the air conditioner was turned on for a 

total of only 5 minutes during condition 3. During that event the AC setpoint was 30ºC. 

Consequently, the energy savings during this 5-minute interval, compared to the BEE 24ºC 

condition, reached 82%. This demonstrates the significant potential for energy savings with a 

ceiling fan prioritized control sequence. It is important that this approach is further tested under 

conditions with higher outdoor temperatures, where the AC is likely to be used more frequently.   

Conclusion 

This paper demonstrates the use of a machine learning model (MLM) for predicting operative 

temperature as a scalable approach to providing comfort based on the adaptive model of the 

National Building Code of India.  The analysis has shown that the MLM is robust enough to 

predict temperatures in rooms that the model was not trained in.  The MLM does this 

consistently with low errors compared to a straight line (correlation) model (SLM) across a range 

of rooms varying in thermal characteristics.  While custom training on the MLM for a specific 

room reduced the RMSE and MBE by 2%, a custom training approach is not scalable.  

In this study, a control sequence was developed that employs the corrective power of ceiling fans 

to adjust the upper threshold of the adaptive thermal comfort band, taking into consideration 

the airspeed of the fan to raise the AC temperature set-point within the room. The control 

sequence places a priority on utilizing ceiling fans and was tested in two conference rooms in 2 

different buildings. The results of the testing reveal that 77% of the respondents reported feeling 

comfortable in the space when the fan-prioritized control sequence was employed, as opposed 

to only 69% for the constant setpoint of 24ºC. Additionally, the fan-prioritized control sequence 

achieved 98.8% reduction in cooling energy consumption during the study period, even in the 

face of outdoor temperatures ranging from 29ºC to 34ºC. 

These substantial cooling energy savings, coupled with the observation that ceiling fans were 

sufficient to provide comfort without the use of air conditioners on multiple occasions 

throughout the study, underscore the potential of ceiling fan-prioritized controls, or even just 

ceiling fans for cooling, as a pathway to affordable and sustainable cooling. 

The key contributions of this study are:  

● While existing controls are mostly based on air temperature because OT is difficult to 

measure in real time, this work uses a novel method to predict OT in a space and uses 

ceiling fans as an affordable cooling solution, resulting in significant cooling energy 

savings.  

● While most studies performed on ceiling fans focus on giving control to occupants, this 

work automates the fan and AC controls with increased air speeds to make this approach 

appropriate for office and institutional buildings. 
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